Black Hills Math Circle

Topic: Mathematical Induction Meeting Number:3 Date:11/17/2012

Let P_1, P_2, P_3, \ldots be a list of propositions that may or may not be true. Principle of Mathematical Induction: It asserts of that all the statements P_1, P_2, P_3, \ldots are true provided: (i) Basis Step: Show that P_1 is true. (ii) Inductive Step: Show that P_{n+1} is true whenever P_n is true.

Problem 1:

Is $(11)^n - 4^n$ where n is a natural number, divisible by 7?

Problem 2:

Is $7^n - 6n - 1$ where n is a natural number, divisible by 36?

Problem 3:

Prove or disprove that $n^2 + n + 41$ is a prime number $n \ge 0$.

Problem 4:

Prove that $1 + 2 + 3 + \cdots + n = n(n+1)/2$.

Problem 5:

Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = n(n+1)(2n+1)/6$.

Problem 6:

Prove that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = (4n^3 - n)/3$.

Problem 7:

Prove that $(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3$.

Problem 8:

Let n be a natural number. Show that any $2^n \times 2^n$ chessboard with one square removed can be tiled using L-shaped pieces.