Black Hills Math Circle

Topic: Mathematical Induction

Meeting Number:3
Date:11/17/2012

Let $P_{1}, P_{2}, P_{3}, \ldots$ be a list of propositions that may or may not be true. Principle of Mathematical Induction: It asserts of that all the statements $P_{1}, P_{2}, P_{3}, \ldots$ are true provided: (i) Basis Step: Show that P_{1} is true. (ii) Inductive Step: Show that P_{n+1} is true whenever P_{n} is true.

Problem 1:

Is $(11)^{n}-4^{n}$ where n is a natural number, divisible by 7?

Problem 2:

Is $7^{n}-6 n-1$ where n is a natural number, divisible by 36 ?

Problem 3:

Prove or disprove that $n^{2}+n+41$ is a prime number $n \geq 0$.

Problem 4:

Prove that $1+2+3+\cdots+n=n(n+1) / 2$.

Problem 5:

Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=n(n+1)(2 n+1) / 6$.

Problem 6:

Prove that $1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\left(4 n^{3}-n\right) / 3$.

Problem 7:

Prove that $(1+2+3+\cdots+n)^{2}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$.

Problem 8:

Let n be a natural number. Show that any $2^{n} \times 2^{n}$ chessboard with one square removed can be tiled using L-shaped pieces.

